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Abstract

The dynamic stability problems of a sandwich plate with a constraining layer and an electrorheological
(ER) fluid core subjected to an axial dynamic force are investigated. The rectangular plate is covered in an
ER fluid core and a constraining layer to improve the stability of the system. Effects of the natural
frequencies, static buckling loads, and loss factors on the dynamic stability behavior of the sandwich plate
are studied in the paper. Rheological property of an ER material, such as viscosity, plasticity, and elasticity
may be changed when applying an electric field. The modal damper and the natural frequencies for the
sandwich plate are calculated for various electric fields. When an electric field is applied, the damping of the
system is more effective. In this study, finite element method and the harmonic balance method are used to
calculate the instability regions of the sandwich plate. The ER fluid core is found to have a significant effect
on the dynamic stability regions.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

When a structure is subjected to periodic loads, it is well known that the ordinary forced
response will lead to dynamic instability under some circumstances. The induced violent vibration
is called the dynamic instability or parametric resonance. A number of investigators have studied
the dynamic instability due to periodic loads: two of these are Bolotin [1] and Evan-Iwanowski [2].
see front matter r 2004 Elsevier Ltd. All rights reserved.
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The periodic loads may cause parametric vibrations, which may damage the structures. As a
consequence, the dynamic instability of a structure subjected to periodic compressive loads has
attracted a lot of attention. The dynamic stability analyses of the rectangular plate have been
widely investigated. Bolotin [1] presented comprehensive studies for the dynamic stability of the
machine components and the structural members. Briseghella and Pellegrino [3] investigated the
dynamic instability problems of elastic structures by finite element method. Takahasi and Konishi
[4] studied the dynamic instability of the rectangular plates subjected to a linearly distributed load,
such as pure bending, along the two opposite edges using harmonic balance method. The
parametric instability characteristics of rectangular plates subjected to localized edge compressing
(compression or tension) are solved by Deolasi and Datta [5]. They studied the dynamic stability
of thin, square, isotropic plates with simply supported boundary conditions, using finite element
method.
Srinivasan and Chellapandi [6] investigated the dynamic instability of a rectangular

laminated composite plate. Moorthy and Reddy [7] solved the parametric instability
problems of the laminated composite plates with transverse shear deformation. Then, Chen
and Yang [8] studied the dynamic stability problems of the laminated plates by the finite element
method.
Many studies regarding the active control of structural vibration have so far been devoted to

the use of electrorheological (ER) fluids. ER fluids have great potential in applications for
intelligent materials and structures. The ER fluid has the same properties as a viscoelastic material
at small strain level. A detail review of ER material advancement was presented by Weiss et al. [9].
The damping of the ER fluids has been paid attention by many researchers since Brooks et al. [10]
studied the viscoelastic property of the ER fluids. Choi and Park [11] and Choi et al. [12] studied
the vibration characteristics of a composite beam with an ER fluid. Oyadiji [13] showed that the
modal parameters were more dependent on the location and size of the ER fluid constraining
layer damping treatment than on the electric field strength for an aluminum plate. The use of an
ER fluid for the construction of smart components has been previously suggested and investigated
in the Coulter’s investigation [14]. The more detail investigations of the ER material in the
structural vibration can be traced to Yalcintas and Coulter [15,16] and Yalcintas and Dai [17].
They studied the vibration problem of a sandwich beam with an ER fluid core and discussed the
effects of the thickness and loss factor on the vibrations were also presented. Then, Lee [18]
investigated the transverse free vibration problem of a sandwich beam, where an iterative method
was explored to study the properties of the nonlinear ER fluid. Kang et al. [19] studied the passive
and active damping characteristics of smart ER composite beams. They investigated the flexural
vibration of laminated composite beams sandwiched by two ER fluid layers to maximize the
possible damping capacity.
In the present study, the dynamic stability of a sandwich plate with a constraining layer and ER

fluid core is investigated. To the author’s knowledge, no work has done to study the vibration and
the dynamic stability of a sandwich plate with a constraining layer and ER fluid core. The finite
element method and the harmonic balance method are adopted to obtain the instability regions of
the sandwich plate and the effects on the instability regions of the constraining layer and ER layer
are also discussed in the paper. By using the complex modulus representation of the ER material,
the Mathieu equation with complex coefficients is obtained. Then the significant effects on the
behavior of the sandwich plate are found in this study.



ARTICLE IN PRESS

J.-Y. Yeh, L.-W. Chen / Journal of Sound and Vibration 285 (2005) 637–652 639
2. Problem formulation

The structure of a sandwich plate with a constraining layer and an ER fluid core is
demonstrated in Fig. 1. Layer 3 is a pure elastic, isotropic and homogeneous constraining layer.
Layer 2 is an ER fluid material and the properties of the ER material can be changed by applying
different electric fields. The base plate is assumed to be undamped, isotropic and homogeneous
and is designated as the layer 1. Before the derivation procedures, the other assumptions used in
this study must be mentioned:
1.
 No slipping between the elastic and ER layers is assumed.

2.
 The transverse displacements, w, of all points on any cross-section of the sandwich plate are

considered to be equal.

3.
 There exists no normal stress in the ER layer, and there exists no shear strain in the elastic layer

either.

By referring to Fig. 2, the strain–displacement relation of the elastic layer can be expressed as:

exi ¼
qui

qx
� zi

q2w
qx2

;

eyi ¼
qvi

qy
� zi

q2w
qy2

; i ¼ 1; 3; (1)

where �xi and eyi are the bending strains, ui and vi are the axial displacements of the mid-plane of
layer i at the x and y directions, respectively, and zi is the distance of the mid-height of layer i.
x 

z 

a 

b 

y 

h1

h2

h3

y 

Constraining layer 

Base plate 

z 

ER fluid 

Fig. 1. The sandwich plate with an ER fluid core and a constraining layer.
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Fig. 2. Undeformed and deformed configurations of a sandwich plate.
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Considering the strain–displacement relation of the ER layer, the shear deformation can be
further expressed as

gx2 ¼
qw

qx
þ
qu2

qz
; (2)

gy2 ¼
qw

qy
þ

qv2

qz
; (3)

where u2 and v2 are the axial displacements in the x and y directions of the ER layer, respectively.
By referring to the geometric relationship between u1; u3; v1; v3 and qw=qz of the face-plate (as
shown in Fig. 2), it can be obtained that

qu2

qz
¼

h1 þ h3

2h2

qw

qx
þ

u1 � u3

h2
; (4)

qv2

qz
¼

h1 þ h3

2h2

qw

qy
þ

v1 � v3

h2
; (5)

where h1; h2; and h3 are the thickness of layers 1, 2, and 3, respectively.
Imposing the displacement compatibility (as shown in Fig. 3) through the thickness, the

following shear strain in the mid-plane can be rewritten as

gx2 ¼
d

h2

qw

qx
þ

u1 � u3

h2
; (6)
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gy2 ¼
d

h2

qw

qy
þ

v1 � v3

h2
; (7)

where

d ¼
h1

2
þ h2 þ

h3

2
:

The strain energy associated with the normal strain in the elastic layer can be obtained:

Vi ¼
1

2

Z
V

Diðe2xi þ e2yiÞdv; i ¼ 1; 3; (8)

where Di is the differential operator matrix and listed in the following discussion in detail.
Then the strain energy of the ER layer is obtained as follows:

V2 ¼

Z
V

G2ðg2x2 þ g2y2Þdv; (9)

where G2 denotes the shear modulus of the ER fluid layer.
Let V be the total strain energy of the sandwich plate; then

V ¼ V1 þ V2 þ V3: (10)

The kinetic energy of the sandwich plate has the following three parts:
1.
 The kinetic energy associated with the axial displacement:

T1 ¼
1

2

Z Z
A

½r1h1ð _u
2
1 þ _v21Þ þ r3h3ð _u

2
3 þ _v23Þ�dxdy: (11)
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Fig. 4. A sandwich plate element with four end nodes and five dof per node.
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2.
 The kinetic energy associated with transverse displacement:

T2 ¼
1

2

Z Z
A

ðr1h1 þ r2h2 þ r3h3Þ _w
2 dxdy: (12)
3.
 The kinetic energy associated with the rotation of the ER layer:

T3 ¼
1

2

Z Z
A

I2ð_g2x2 þ _g2y2Þdxdy; (13)

where I2 is the mass moment of inertia of the ER layer.
Let T be the total kinetic energy of the sandwich plate, then

T ¼ T1 þ T2 þ T3: (14)

The plate elements used in this study are two-dimensional element bounded by four nodal
points. The plate element is shown in Fig. 4. Each node has seven degrees of freedom to describe
the longitudinal displacements, transverse displacements, and slopes of the sandwich plate. The
transverse displacement, longitudinal displacement can be expressed in terms of a nodal
displacement vector and a shape function vector:

wðx; y; tÞ ¼ Nwðx; yÞfqðtÞg; (15)

u1ðx; y; tÞ ¼ Nu1ðx; yÞfqðtÞg; (16)

u3ðx; y; tÞ ¼ Nu3ðx; yÞfqðtÞg; (17)

v1ðx; y; tÞ ¼ Nv1ðx; yÞfqðtÞg (18)

and

v3ðx; y; tÞ ¼ Nv3ðx; yÞfqðtÞg; (19)



ARTICLE IN PRESS

J.-Y. Yeh, L.-W. Chen / Journal of Sound and Vibration 285 (2005) 637–652 643
where qðtÞ ¼ ½u1i; v1i; u3i; v3i;wi;w;xi;w;yi�
T for i ¼ 1; 2; 3; 4: Nwðx; yÞ; Nu1ðx; yÞ; Nu3ðx; yÞ; Nv1ðx; yÞ;

and Nv3ðx; yÞ are the shape functions of the plate element.
The strain energy and kinetic energy derived in the above section can be rewritten in terms of

nodal displacement variables as follows:

V ¼ 1
2
fqðtÞgTð½K1� þ ½K2� þ ½K3� þ ½K4� þ ½K5�ÞfqðtÞg; (20)

where

½K1� ¼ h1

Z Z
A

½N1�
T½D1p�½N1�dxdy; (21)

½K2� ¼

Z Z
A

½Nb�
T½D1b�½Nb�dxdy; (22)

½K3� ¼ h3

Z Z
A

½N3�
T½D3p�½N3�dxdy; (23)

½K4� ¼

Z Z
A

½Nb�
T½D3b�½Nb�dxdy (24)

and

½K5� ¼ G2h2 


Z Z
A

½Ng�
T½Ng�dxdy; (25)

where

½N1� ¼

Nu1;x

Nv1;y

Nu1;y þ Nv1;x

2
64

3
75;

½Nb� ¼

Nw;xx

Nw;yy

2Nw;xy

2
64

3
75;

½N3� ¼

Nu3;x

Nv3;y

Nu3;y þ Nv3;x

2
64

3
75;

½Ng� ¼
d

h2

ðNu1 � Nu3Þ=d þ Nw;x

ðNv1 � Nv3Þ=d þ Nw;y

� 	
;

½Dip� ¼
Ei

ð1� u2i Þ

1 ui 0

ui 1 0

0 0 ð1� uiÞ=2

2
64

3
75; i ¼ 1; 3;



ARTICLE IN PRESS

J.-Y. Yeh, L.-W. Chen / Journal of Sound and Vibration 285 (2005) 637–652644
½Dib� ¼
EiI i

ð1� u2i Þ

1 ui 0

ui 1 0

0 0 ð1� uiÞ=2

2
64

3
75; i ¼ 1; 3;

where Ei; ui; and I i denote Young’s modulus, Poisson’s ratio, and the area moment of inertia of
the ith layer.
In addition, the kinetic energy of the sandwich plate is

T ¼ 1
2
f _qðtÞgTð½M1� þ ½M2� þ ½M3� þ ½M4�Þf _qðtÞg; (26)

where

½M1� ¼

Z Z
A

ðr1h1 þ r2h2 þ r3h3Þ½Nw�
T½Nw�dxdy; (27)

½M2� ¼

Z Z
A

r1h1ð½Nu1�
T½Nu1� þ ½Nv1�

T½Nv1�Þdxdy; (28)

½M3� ¼

Z Z
A

r3h3ð½Nu3�
T½Nu3� þ ½Nv3�

T½Nv3�Þdxdy; (29)

½M4� ¼

Z Z
A

I2½Ng�
T½Ng�dxdy: (30)

Considering the situation of a sandwich plate element with a periodic load. The work done by
the periodic load can be expressed as

W ¼
1

2

Z Z
A

PðtÞ
qw

qx


 �2

dxdy: (31)

Substitute the interpolation function into the above equation, and we can obtain that

W ¼ 1
2
fqðtÞgTPðtÞ½Ke

g�fqðtÞg; (32)

where

½Ke
g� ¼

Z Z
A

qNW

qx

� 	T qNW

qx

� 	
dxdy:

According to the Hamilton’s principle, we have

d
Z t2

t1

ðT � V þ W Þdt ¼ 0: (33)

By substituting the strain energy, kinetic energy, and the work done by the load force into the
Hamilton’s principle, the governing equation for the sandwich plate element is obtained as
follows:

½Me�f €qðtÞg þ ð½Ke� � PðtÞ½Ke
g�ÞfqðtÞg ¼ f0g; (34)
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where

½Me� ¼ ½M1� þ ½M2� þ ½M3� þ ½M4� (35)

and

½Ke� ¼ ½K1� þ ½K2� þ ½K3� þ ½K4� þ ½K5�: (36)

Assembling the contributions of all elements, the global dynamic equation of the sandwich
plate with an ER layer and constraining layer as shown in Fig. 5 can be expressed as

½M�f €qðtÞg þ ð½K � � PðtÞ½Kg�ÞfqðtÞg ¼ f0g: (37)

In the above equation, the periodic load force PðtÞ can be expressed in the form

PðtÞ ¼ aP0 þ bP0 cos Yt; (38)

where a is the static load factor, b is the dynamic load factor, Y is the disturbance frequency, and
P0 is the static buckling load.
Substituting Eq. (38) into Eq. (37), the equation of motion can be rewritten as

½M�f €qðtÞg þ ð½K � � aP0½Kg� � bP0½Kg� cos YtÞfqðtÞg ¼ f0g: (39)

The above equation is a Mathieu–Hill equation with a periodic coefficient. The boundary of the
dynamic instability of the system is formed by the periodic situations of the T and 2T ; where
T ¼ ð2p=YÞ: The boundary of the primary instability region with period 2T is of practical
importance and the solution can be obtained in the form as follows:

fqðtÞg ¼ fag sinðYt=2Þ þ fbg cosðYt=2Þ: (40)

Then, substitute Eq. (40) into Eq. (39) and the following relations can be obtained:

�
Y2

4
½M� þ ½K � � aP0½Kg� þ

bP0

2
½Kg�


 �
fag sin ðYt=2Þ ¼ f0g; (41)

�
Y2

4
½M� þ ½K � � aP0½Kg� �

bP0

2
½Kg�


 �
fbg cos ðYt=2Þ ¼ f0g; (42)
x 

y 

P(t) P(t)

Fig. 5. A plate subjected to an in-plane dynamic load.
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where the sinðYt=2Þ and cos ðYt=2Þ can be expressed as exponential types:

sinðYt=2Þ ¼ �
j

2
½expðjYtÞ � expð�jYtÞ�; (43)

cosðYt=2Þ ¼ 1
2
½expðjYtÞ þ expð�jYtÞ�; (44)

where j ¼
ffiffiffiffiffiffiffi
�1

p
:

Substitute Eqs. (43) and (44) into Eqs. (41) and (42) and rewrite the above relations. The
following equations can be obtain as:

j �
Y2

4
½M� þ ½Kr� � aP0½Kg� þ

bP0

2


 �
fag � ½Kj�fag ¼ 0; (45)

j½Kj�fbg þ �
Y2

4
½M� þ ½Kr� � aP0½Kg� �

bP0

2


 �
fbg ¼ 0; (46)

where superscripts r and j of the stiffness matrices denote the real and imaginary part of matrices,
respectively. The non-trivial solution of the system is as follows:

�
Y2

4
½M� þ ½Kr� � P0ða� b=2Þ½Kg� ½Kj�

�½Kj� �
Y2

4
½M� þ ½Kr� � P0ðaþ b=2Þ½Kg�




¼ 0: (47)

The above equation is referred to as the equation of boundary frequencies hereafter. It is used
to calculate the boundaries of the instability regions of the system.
3. Numerical results and discussion

The dynamic stability problems of a sandwich plate with an ER fluid core and constrained layer
are studied by finite element method. Existing models developed for viscoelastically damped
sandwich structures were found applicable to ER material structural analysis due to the
similarities in the rheological behavior. To validate the proposed algorithm and calculations,
comparisons between the present results and the results of existing models are made first. The
solutions of natural frequencies and loss factors of a simply supported sandwich plate with a
viscoelastic layer are obtained. The numerical results are compared with those obtained by Lall et
al. [20] and Zhang and Sainsbury [21] in Tables 1 and 2, respectively. The solutions solved by
present model are shown to have a good accuracy. A good agreement can be observed in the
above results with different geometry. And to validate the characteristics of the ER materials of
the system, Fig. 6 shows the variations in the structural loss factor as a function of electric field
and it can be seen that a good agreement with Choi et al. [12] at lower electric fields and Yalcintas
and Dai [17] at higher electric fields.
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Table 2

Comparisons of natural frequency and loss factor

Ref. [19] Present

Mode Natural frequency (Hz) Loss factor Natural frequency (Hz) Loss factor

1 59.05 0.206 58.69 0.201

2 113.67 0.213 113.75 0.211

3 128.89 0.207 129.16 0.208

4 175.76 0.188 175.46 0.189

5 193.67 0.179 193.79 0.183

Table 1

Comparisons of natural frequency and loss factor

Ref. [18] Present

Mode Natural frequency (rad/s) Loss factor Natural frequency (rad/s) Loss factor

(1,1) 975.17 0.044 972.89 0.044

(1,2) 2350.79 0.019 2346.45 0.019

(2,1) 2350.79 0.019 2346.45 0.019

(2,2) 3725.33 0.012 3711.90 0.012
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Fig. 6. Dependence of modal loss factor on the electric field for a sandwich plate with simply supported end condition

(h1 ¼ 0:05mm; h2 ¼ h3 ¼ 0:5mm). (a) ER material by Don [22], (b) ER material by the modified experimental data [14].
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The materials of the constrained layer and the plate are chosen to be aluminum. The
geometrical and physical parameters of the sandwich plate are as follows:

a ¼ 0:3m; b ¼ 0:25m; E1 ¼ E3 ¼ 70
 109 N=m2; r1 ¼ r3 ¼ 2700kg=m3;

h1 ¼ 0:05mm; h2 ¼ h3 ¼ 0:5mm; r2 ¼ 1700kg=m3; m ¼ 0:3:
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The simply supported sandwich plate subjected to a in-plane dynamic load is chosen in Fig. 5.
Besides, on is the natural frequency of the simply supported sandwich plate with thickness ratio
h1=h3 ¼ 0:1; h2=h3 ¼ 0:5; thickness of the base plate h3 ¼ 0:5mm subjected to an electric field
En ¼ 0:5kV/mm. Based on the existing information of the ER material, only the electric field
dependence properties of an ER material in the pre-yield regime needs to be considered. The
complex modulus of the used ER fluid was experimentally measured by Don [22] and can be
expressed as follows:

G2a ¼ G0
a þ G00

a;

where the shear storage modulus G0
a  15 000E2

n
; the loss modulus G00

a  6900; and En is the
electric field in kV/mm.
Yalcintas [15] presented another modified experimental data to calculate the characteristics of

the ER material and by the following relations:

G2b ¼ G0
b þ G00

b;

where the shear storage modulus G0
b  50 000E2

n
; the loss modulus G00

b  2600En þ 1700:
Fig. 6 shows the variations in the structural loss factor for each mode as a function of electric

field. We can see that the structural loss factor decreases as the elastic field increase as shown in
Fig. 6(a). In Fig. 6(b), the modified ER material data is used to calculate the variations in the
structural loss factor for each mode and It can be observed that the modal loss factor increases as
the electric field increases and then decreases as the field becomes higher than a certain value
about 1 kV/mm. The variations of the ER sandwich plate are similar with Choi et al. [12] in lower
and higher electric fields, the variations of the structural loss factor of the sandwich plate are also
similar. The electric field dependence of the loss factor is most significant in the first mode. The
effects of the dynamic load factor b on the first dynamic instability regions are shown in Fig. 7.
0.04 0.08 0.12 0.16 0.2
0.92

0.96

1

1.04

1.08

1.12

Θ
/2

ω
∗

E*=0.5kv/mm

E*=1.0

E*=1.5

β

Fig. 7. The effects of dynamic load factor b with different applied electric fields (h1 ¼ 0:05mm; h3 ¼ 0:5mm;
h2=h3 ¼ 0:5).
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The stability and instability boundaries are obtained by the first approximation in Eq. (47) and
the primary instability regions are only drawn. The first instability regions of the sandwich plate
will be moved upward by applying electric field as the stiffness of the ER layer is stronger at higher
electric field, and the tip of first instability regions of the system decreases by decreasing the
electric fields applied. Figs. 8 and 9 show the variations of the first instability regions with
different thickness ratios (h2=h3) subjected to electric fields En ¼ 0:5 and 1.5 kV/mm, respectively.
As shown in the figures, it is found that the first instability regions of the system will be moved
downward with the increasing of the thickness ratio (h2=h3). When the thickness of the ER layer
0.04 0.08 0.12 0.16 0.2
0.84

0.88

0.92

0.96

1

1.04

1.08

Θ
/2

ω
∗

h2 /h3=0.5

h2/h3=0.8

h2/h3=1.0

β

Fig. 8. The effects of dynamic load factor b with different thickness ratio h2=h3 (h1 ¼ 0:05mm; E� ¼ 0:5kV=mm).

0.04 0.08 0.12 0.16 0.2
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1.08

1.12
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ω
∗

h2/h3=0.5

h2/h3=0.8
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Fig. 9. The effects of dynamic load factor b with different thickness ratio h2=h3 (h1 ¼ 0:05mm; E� ¼ 1:5kV=mm).
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increases, the first instability regions of the system will become smaller and are moved downward.
The reasons are that the ER layer will provide a large damping effect as the thickness of the ER
layer increases, and it will decrease the stiffness of the system too. So, the first instability regions
of the system are moved downward and the damper of the system will be stronger. Additionally, it
has the same results when applying different electric fields on the sandwich plate. And, the
variations of the instability regions of the sandwich plate are more clear with changing the
thickness of the ER fluid layer than changing the applied electric field. On the other hand,
the effects of the constraining layer are also discussed in this study, and the variations of the first
0.04 0.08 0.12 0.16 0.2

β

0.88

0.92

0.96

1

1.04

1.08

Θ
/2

ω
∗
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h1/h3=0.2

h1/h3=0.3

Fig. 10. The effects of dynamic load factor b with different thickness ratio h1=h3 (h2 ¼ 0:05mm; E� ¼ 0:5 kV=mm).

Fig. 11. The effects of static load factor a with different applied electric fields (h1 ¼ 0:05mm; h2 ¼ h3 ¼ 0:5mm;
E� ¼ 0:5kV=mm: ; E� ¼ 1:5kV=mm: ) .
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Fig. 12. The effects of static load factor a with different thickness ratio h2=h3 (h1 ¼ 0:05mm; h3 ¼ 0:5mm; En ¼

0:5kV=mm; h2=h3 ¼ 0:5: ; h2=h3 ¼ 1:0: ) .
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instability regions of the system with different thickness of the constraining layer are plotted in
Fig. 10. The constraining layer can also provide the damping effects as shown in the figure.
The first instability region of the system will be moved downward and become smaller when the
thickness of the constraining layer is getting larger. The effects of the static load factor a on the
dynamic instability regions are shown in Fig. 11. In the figure, the first instability regions of the
system are moved upward with increasing of applied electric fields. Fig. 12 shows the variations of
the first instability regions when changing the thickness of the ER layer. From the results in Fig.
12, the stiffness of the system decreases with increasing of the thickness of the ER layer. The first
instability regions will be moved downward as the stiffness of the system getting smaller when the
thickness of the ER layer increases.
4. Conclusion

The dynamic stability problems of a sandwich plate with an ER fluid core and constrained layer
are studied in this paper. The finite element method, and Bolotin’s method are used in the
analysis. Additionally, the complex representations of the ER fluid material are also used in this
study. Numerical results are shown that the effects of the ER fluid layer and the constraining layer
tend to stabilize plate system. It shows that the electric field will change the stiffness of the
sandwich plate. The increase of the thickness of the ER layer will decrease the dynamic stability
regions of the sandwich plate. The increase of the electric field level and the constraining layer
thickness increases the stiffness of the sandwich plate, and it will change the instability regions of
the system. Hence, the ER material can be used to improve the stability of various mechanical
devices. The effects of the sandwich shell and circular plate with the ER fluid layer are the
interesting topics to be studied. Additionally, the cases of the rotatory sandwich plates with ER
fluid core are also an interesting one to be investigated.
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